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T H E O R Y  OF A F L A T  S U B M E R G E D  J E T  O F  A 

L I Q U I D  W I T H  A P O W E R  R H E O L O G I C A L  L A W  

N O N - N E W T O N I A N  

K.  B.  P a v l o v  UDC 532.516 

The c h a r a c t e r  of the propagat ion  of shea r  pe r tu rba t ions  in non-Newtonian liquids with a power rheo log i -  
cal  law [1] 

~ir = 2 k  (fa$]ag)(n--l)12]~i (1) 

is e s sen t i a l ly  de te rmined  by the value of the exponent n in (1), where  ~ij is the deviator  of the s t r e s s  t ensor ;  
fij is the t ensor  of the deformat ion  r a t e s ;  k and n a r e  rheo log ica l  constants  of the medium.  With the t e r m i n o l -  
ogy adopted,  media  with n > 1 a r e  cal led dilatant ,  and with n < 1 they a re  cal led pseudoplas t ic ;  the ca se  n= 1 
co r r e sponds  to a Newtonian v iscous  liquid. It  is well  known that,  in di latant  l iquids, shear  pe r tu rba t ions  a r e  
p ropaga ted  with a finite r a t e ,  whe reas ,  in pseudoplas t ic  and Newtonian v iscous  l iquids,  the r a t e  of  propagat ion  
of per tu rba t ions  is infinite [2, 3]. As a r e s u l t  of this ,  there  is a finite th ickness  of the boundary layer  with 
l amina r  flow of a di latant  liquid pas t  a f lat  semi inf in i te  plate.  Actually,  the finite thickness of the boundary 
layer  in this case  is explained by the fac t  that the shear  pe r tu rba t ions ,  propagat ing  with a finite ve:[ocity, a r e  
c a r r i e d  along the flow and e m e r g e  to the su r face ,  at  which the layer  is fo rmed  only at  a finite dist~Lnce in the 
d i rec t ion  of its t r a n s v e r s e  coordinate .  The inexact  p ic ture  given in [4], unjust i f iably excluded the fact  of the 
finite thickness of  the boundary layer  in the case  of ~densifying n di latant  liquids with 1 < n < 2. At the s a m e  t ime,  
the finite th ickness  of the boundary layer  can be r i g o r o u s l y  shown in the case  of  any given di latant  liquid with 
a r b i t r a r y  values  of  n> 1. 

If, in di tatant  l iquids, the r a t e  of propagat ion  of shear  per tu rba t ions  is finite,  a f lat  l amina r  je t  i m m e r s e d  
in such liquids should have a finite th ickness ,  i .e . ,  a t  a finite dis tance f r o m  the axis  of  the je t  in the liquid 
there  is a su r face  y=yf f  (x) outside of which the longitudinal component  of the veloci ty  is equal  to ze ro  (see 
Fig. 1). This is connected with the fac t  that  the jet  br ings  into motion the liquid into which it  flows out; in 
addition to the longitudinal, the liquid has a t r a n s v e r s e  component  of  the veloci ty ,  d i rec ted  toward the axis of 
the jet. On the other  hand, the r a t e  of propagat ion  of  shear  per tu rba t ions  in di latant  l iquids,  connected with a 
change in the longitudinal component  of  the veloci ty ,  d e c r e a s e s  with an i n c r e a s e  in the dis tance f r o m  the source  
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Fig. 1 

of the per tu rba t ions ,  located in a submerged  j e t  a t  its axis .  It  is the re fo re  to be expected that, a t  a de te rmined  
dis tance f r o m  the axis of  the jet ,  the r a t e  of p ropaga t ion  of  the shear  pe r tu rba t ions  becomes  equal to the t r a n s -  
v e r s e  component  of the ve loc i ty  of  the liquid, as  a r e s u l t  of  which the shear  pe r tu rba t ions  a r e  propagated  only 
to a finite dis tance f r o m  the axis of  the jet .  In other  words ,  the front  of the shear  wave mus t  stop in the 
liquid, and the shea r  per tu rba t ions  pene t r a t e  into the liquid only to a finite dis tance f r o m  the axis  of  the jet.  

The solution of the p r o b l e m  of a f la t  submerged  j e t  of  a power liquid was cons idered  in the case  of 
pseudoplas t ic  liquids in [5-7]. However ,  no analy t ica l  solution was obtained for the case  of  di latant  liquids. 
It  is natural  t he re fo re  that,  in this work,  the fact  of the spa t ia l  local izat ion of the shear  per tu rba t ions  was not 
obse rved .  In view of this the r e s u l t s  of the p r e s e n t  work supplement  the cons idera t ions  given in [5-7!. 

F r o m  an infinitely thin s l i t  in the ha l f - space  x> 0 (see Fig. 1) filled with a power liquid (1) let  there  
i s sue  a liquid with a constant  value of  the m o m e n t u m  

+ f p u 2 d y  = 2Io, 
(2) 

where  p is the densi ty  of  the liquid; u(x, y) is the longitudinal component  of the veloci ty.  The flow of liquid is 
�9 s y m m e t r i c a l  with r e s p e c t  to the x axis  and, for  its descr ip t ion ,  it is suff icient  to l imit  ou r se lves  to the reg ion  
x, y-> 0. Then, for de te rmina t ion  of the s t r e a m  function 

~p(z, y) = a,n(2-.)xU~,, /(~), (3) 

n = ~ l  ' ~2/an, a~-.-~-,, x, y > O  

in the approx imat ion  of the boundary l ayer  the following p rob l em a r i s e s  [8]: 

(4) 
" d~l kdq2/ - -  

d~f , df / (o) = ~ (o) = ~ (oo) = o,, (5) 

as a r e su l t  of whose solution,  taking account  of  (3), both project ions  of  the ve loc i ty  u(x, y) and v(x, y ) c a n  be 

de te rmined .  

In tegra t ing Eq. (4) twice taking account  of the f i r s t  two boundary bonditions (5) we have 

df __ [2n-- { n/(2n--l) dq L ~  (A(n+l)ln - -  [(n+ i)/n)] ' (6) 

where A is an in tegrat ion constant ,  whose value is de te rmined  below. Assuming  

](~l) - -  A ~ ~/('~+l) ' (7) 

a f t e r  in tegrat ion of (6) we can obtain the exp re s s ion  

~ ~--l/(n+l) [A 2-n  (2n -- i) n (n + l)n--l] t/(2n-l) (8) 
(t 

0 

using which the solution of p rob l em  (4), (5) is wri t ten in quadra tu res .  

I t  is obvious that,  with ~ = 1, df/d~ = 0, the express ion  under the in tegra l  sign in (8) has a s ingular i ty ,  
in tegrable  if  n> 1, and nonintegrable if  n < _ 1. It  the re fo re  follows f rom (8) that,  in the case  of pseudoplast ic  and 
Newtonian viscous  liquids, the third condition of  (5) is sa t i s f ied  with ~ - ~ .  Thus,  express ion  (8) mus t  be 
r ega rded  as the solution of p r o b l e m  (4), (5) in the case  n -  < 1 with the as yet  undetermined constant  A. 
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In the case of di latant  liquids, the third condition of (5) is found to be satisfied with ~?= ~?r <~:: 

I n  n - ~ ]  _ n A ( 2 ~ n ) / ( 2 n - l ) B  n - - 1 '  2~-;~--~1 ~la, [(2n -- t) '~ (n - t -  t) '~-l] i..'(-~- i) (9) 

(B[p, q] is a beta function [9]). 

Equation (6), which must  be integrated during the process  of the const ruct ion of  the solution of the 
p rob lem (4), (5),  in addition to the par t i a l  solution f l ( 0 ,  determined by express ions  (7), has a special  solution 
f2(0 =A [10]. Noting that the constant  solution f= const  sa t isf ies  Eq. (4) and the third boundary condition of (5), 
we cons t ruc t  the genera l ized  solution of  the prob lem (4), (5) 

th  (~) with 0 ~ ~1 ~ ~1r (lO) 
/ (n) = / / ,  (n) with ~1r <~ ~1 < ~, 

joined with 77 = 7r with a weak discontinuity f rom the par t ia l  and specia l  solutions of Eq. (6). 

Thus, a solution of p rob lem (4), (5) has been cons t ruc ted  with n> 1, having a di f ferent  analyt ical  desc r ip -  
tion with different  values of 7- The physical  in tegrat ion of solution (10) means that  the longitudinal component 
of the veloci ty  u(x, y) in the case  of submerged je ts  of dilatant liquids va r ies  comple te ly  inside of the spatial ly 
localized region - y r  -< y-< y ~(x) (see Fig. 1), outside of which i t  is equal to ze ro :  

u (x, y) - -  or - -  O, v (x, g) : - -  ~ = - -  ~A al,2,:a_,,~x(~__3~)/3~, 

(0 < x < oo, g,,, (x)  < y < c~). 

The limits of the region of spatial  local izat ion of the shear  perturbations a re  de termined  f rom (3), (9) 
g~(x )  : (3ha ~'2 )U(2n--l) ~loX2/3n. (11) 

The integrat ion constant  A is calculated f rom the condition (2) taking account of (3), (6), (7); as a resu l t ,  
for al l  values of n we have 

I ~ [{ I~ ~~,~-~ 3(~:-1)  3'~--~ 3~.,',~i~/3~ 

, 2~ -- iJ J ] 

Since B[p, q-*+0)] ~o, then, from (9) and (Ii) it follows that, with n-~l +0 y@(x)-~, i.e., with a transi- 
tion to the case of a Newtonian viscous liquid, the longitudinal component of the velocity u(x, y) varies, not in a 

localized region, but in the whole half-space x> 0. 

There is another obvious limiting transition in expressions (9), (ii), (12) to the case of a "limiting 
dilatant n liquid n~r [8]. In this case, y@(x)~0, and the jet issuing from the slit moves through a medium at 

rest, like a solid rod through an ideal nonviscous liquid. 

In conclusion we note that the spatial localization of the shear perturbations in dilatant liquids is similar 
to the fact of the existence of frontal solutions of the type of thermal waves in the theory of nonlinear thermal 

conductivity [ii]. In both cases the generalized solutions of nonlinear parabolic equations (systems) contain a 
surface of a weak discontinuity, i.e., a front, at which a constant solution is joined with a variable solution. In 
[12] a connection was established between solutions of the type of thermal waves and the existence of singular 
solutions of the corresponding differential equations (systems). With a consideration of problems of the theory 

of the boundary layer of dilatant liquids, this connection is also evident. 
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E Q U I L I B R I U M  AND 

F L U I D  D R O P  

V .  R .  O r e l  

S T A B I L I T Y  O F  A N  I N C O M P R E S S I B L E  

UDC 532.5 

Equi l ibr ium shapes and stabil i ty of axial ly  symmet r i c  drops were  investigated in detail  in [1-3]. The 
papers  [4-6] were  devoted to conditions of drop breakup following slow growth. Based on the resu l t s  of  [6!, a 
mechanism was suggested [7] for de termining  the sur face- tens ion  coeff icient  of  the fluid by the height of the 
drop at  the moment  of break-up.  Below we consider  equi l ibr ium and stabil i ty of an axial ly symmet r i c  drop, 
adjacent  to a bulk incompress ib le  fluid and bounded by a planar  f ree  surface .  Unlike [1-7], in studying the s ta -  
bi l i ty of  this sys tem [8] i t  is n e c e s s a r y  to take into account  per turbat ions  varying the volume of the drop. 
The re fo re  the c lass  of  stable equi l ibr ium shapes is narrowed down. 

1. Let  some volume Q of  an incompress ib le  fluid be in a uni form field of mass  fo rces  and be confined by 
solid walls of a container  S and by f ree  sur faces  Z and Z1. The surface  Z1 is planar ,  and ~ confines that par t  
of the volume,  prot ruding in the fo rm  of a drop at the outer  surface  of the conta iner  wa l l s .  We assume  that the 
wall sur face  near  the contour L is the base of the drop and the wetting cha rac te r i s t i c  of this pa r t  of the wall is 
axial ly symmet r i c ,  while the s y m m e t r y  ax i s  is para l le l  to the direct ion of the gravi ty  field g. We assume that 
the drop is also axial ly symmet r i c .  The contour radius of the drop base is denoted by R0, and the drop height 
by H. We introduce a cyl indr ica l  coordinate  sys t em {r, z, 0} with origin at  the center  of the drop base and a 
Z axis along the s y m m e t r y  axis inside the volume Q (Fig. 1). The coordinates  r and z a r e  dimensionless:  
r = R/R0, z = Z/R 0. 

We denote by s the path length measured  f rom the plane of the drop along the meridian.  The mer idian  
coordinates  a r e  given pa r ame t r i c a l l y  

r = r(s), z = z ( s ) ,  O ~ s ~  l, 

where l is the total length of the drop mer idian .  

The functions r (s ) ,  z(s) sa t i s fy  the well-known [1] sys tem of o rd ina ry  different ial  equations 

r" ( s )  = - - z ' ( s )q ( s ,  ~, p~,~,~" ~.l = r '(s)q(s,  6,  ~l), (1.1) 

q(s, ~, ~l) = ~z(O -:- ~t - -  z '(s)/r(s)  

and the boundary conditions ( -h  is the ordinate  of the pole of the drop) 

r(O) = O, z(O) = - - h ,  r(l)  = 1, z( l )  = O. (1.2) 

The dimensionless  p a r a m e t e r s  t ,  7? of  the sys tem (1.1) a re  
= , o g f l ~ / a ,  ~1 = PoRo/a,  (1.3) 

where p is the fluid density,  g is the acce le ra t ion  projec t ion  of the gravi ty  force  g on the Z axis ,  v is the su r -  
face- tens ion  coefficient  of the drop, and P0 is the p r e s s u r e  at the base  plane of the drop (z - 0). 
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