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THEORY OF A FLAT SUBMERGED JET OF A NON-NEWTONIAN
LIQUID WITH A POWER RHEOLOGICAL LAW

K. B. Pavlov 1UDC 532.516

The character of the propagation of shear perturbations in non~Newtonian liquids with a power rheologi-~
cal law [1]
Gis = 2k (fapfas) "= 002, (1)

is essentially determined by the value of the exponent n in (1), where oyj is the deviator of the stress tensor;
fjj is the tensor of the deformation rates; k and n are rheological constants of the medium, With the terminol-
ogy adopted, media with n>1 are called dilatant, and with n<1 they are called pseudoplastic; the case n=1
corresponds to a Newtonian viscous liquid. It is well known that, in dilatant liquids, shear perturbations are
propagated with a finite rate, whereas, in pseudoplastic and Newtonian viscous liquids, the rate of propagation
of perturbations is infinite [2, 3]. As a result of this, there is a finite thickness of the boundary layer with
laminar flow of a dilatant liquid past a flat semiinfinite plate. Actually, the finite thickness of the boundary
layer in this case is explained by the fact that the shear perturbations, propagating with a finite velocity, are
carried along the flow and emerge to the surface, at which the layer is formed only at a finite distance in the
direction of its transverse coordinate. The inexact picture given in [4], unjustifiably excluded the fact of the
finite thickness of the boundary layer in the case of "densifying® dilatant liquids with 1 <n<2, At the same time,
the finite thickness of the boundary layer can be rigorously shown in the case of any given dilatant liquid with
arbitrary values ofn>1.

If, in dilatant liquids, the rate of propagation of shear perturbations is finite, a flat laminar jet immersed
in such liquids should have a finite thickness, i.e., at a finite distance from the axis of the jet in the liquid
there is a surface y=yg (X) outside of which the longitudinal component of the velocity is equal to zero (see
Fig. 1). This is connected with the fact that the jet brings into motion the liquid into which it flows out; in
addition to the longitudinal, the liquid has a transverse component of the velocity, directed toward the axis of
the jet. On the other hand, the rate of propagation of shear perturbations in dilatant liquids, connected with a
change in the longitudinal component of the velocity, decreases with an increase in the distance from the source
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Fig. 1

of the perturbations, located in a submerged jet at its axis. It is therefore to be expected that, at a determined
distance from the axis of the jet, the rate of propagation of the shear perturbations becomes equal to the trans-
verse component of the velocity of the liquid, as a result of which the shear perturbations are propagated only
to a finite distance from the axis of the jet. In other words, the front of the shear wave must stop in the

liquid, and the shear perturbations penetrate into the liquid only to a finite distance from the axis of the jet.

The solution of the problem of a flat submerged jet of a power liquid was considered in the case of
pseudoplastic liquids in [5-7]. However, no analytical solution was obtained for the case of dilatant liquids.
It is natural therefore that, in this work, the fact of the spatial localization of the shear perturbations was not
observed. In view of this the results of the present work supplement the considerations given in [5~71.

From an infinitely thin slit in the half-space x>0 (see Fig. 1) filled with a power liquid (1) let there
issue a liquid with a constant value of the momentum

j' putdy = 2I,, @)

where p is the density of the liquid; u(x, y) is the longitudinal component of the velocity. The flow of liquid is
'symmetrical with respect to the x axis and, for its description, it is sufficient to limit ourselves to the region
%X, y= 0. Then, for determination of the stream function

P(z, y) = ali2e—mgilsn f(xy), (3)

L 1 1/en—-1) y _ k
1= (3”&1/2) ’ zz/ani a=—p_1_ z, y>0

in the approximation of the boundary layer the following problem arises [8]:

4
0 g (5 )+dn (1) =05
1(0)=FL©0) =3 () =0, ®)

as a result of whose solution, taking account of (3), both projections of the velocity u(x, y) and v(x, y) can be
determined.

Integrating Eq. (4) twice taking account of the first two boundary bonditions (5) we have

d 9 — n/(2n—1) 6
Wﬁ‘ _ [:+ 11 (AH0In_ f(n+1)/n)] g (6)
where A is an integration constant, whose value is determined below. Assuming
f(n) = Ag/ntD), (7)
after integration of (6) we can obtain the expression ‘
£
S i) (f _gy—niCn—D) ge [42 " (2n — )" ’fn + priien—h 0, ®)

using which the solution of problem (4), (5) is written in quadratures.

It is obvious that, with ¢ =1,df/d»=0, the expression under the integral sign in (8) has a singularity,
integrable if n> 1, and nonintegrable if n=<1. It therefore follows from (8) that, in the case of pseudoplastic and
Newtonian viscous liquids, the third condition of (5) is satisfied with »—e. Thus, expression (8) must be
regarded as the solution of problem (4}, (5) in the case n<1 with the as yet undetermined constant A.
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In the case of dilatant liquids, the third condition of (5) is found to be satisfied with n= ng <«:

= n (2—n)f(In—1) 3 n—1
No = [(2n __ 1)11. (n—+ ,1)71——-111,’(211—1) 47 B [n——_“ 1’ -':)'-"""‘n — 1] (9)

(B[p, q] is a beta function [9]).

Equation (6), which must be integrated during the process of the consfruction of the solution of the
problem (4), (5}, in addition to the partial solution f;(n), determined by expressions (7), has a special solution
fo(n) =A [10]. Noting that the constant solution f=const satisfies Eq. (4) and the third boundary condition of (5),
we construct the generalized solution of the problem (4), (5)

i) wih 0<N< Mo, 7 (10)

! (")Z{f-z(n) with Mlo<{1 < oo,

joined with n=ng with a weak discontinuity from the partial and special solutions of Eq. (6).

Thus, a solution of problem (4), (5) has been constructed with n>1, having a different analytical descrip~
tion with different values of 5. The physical integration of solution (10) means that the longitudinal component
of the velocity u(x, y) in the case of submerged jets of dilatant liquids varies completely inside of the spatially
localized region —y@(x) =y=7Y 4x) (see Fig. 1), outside of which it is equal to zero:

o L __ _ — . ‘_ l22—n -—3n),/8n
u(e,y) = - =0, vz y) = — = — g aemung
(0 <z < o0, yo(r) <<y < o).
The limits of the region of spatial localization of the shear perturbations are determined from (3), (9)
Yo(z) = (Bnal? YAn—1 qezn, (11)
The integration constant A is calculated from the condition (2) taking account of (3), (6), (7); as a result,

for all values of n we have
4 on—1 _on3n--1 1/ny1/3
4= \[2"1“‘1 - 3n—1 v 2(1?—(,13 (52—'-'1)/2(2——n) Y " (12)
pB{ n n ‘l n a , .

in—1 2n—1

l

Since Blp, q —*0)] —«, then, from (9) and (11) it follows that, with n—1+0 yq)(x) —w, i.e., with a transi-
tion to the case of a Newtonian viscous liquid, the longitudinal component of the velocity u(x, y) varies, notina
localized region, but in the whole half-space x> 0.

There is another obvious limiting transition in expressions (9), (11}, (12) to the case of a "limiting
dilatant® liquid n—w [8]. In this case, yg(x)—0, and the jet issuing from the slit moves through a medium at
rest, like a solid rod through an ideal nonviscous liquid.

In conclusion we note that the spatial localization of the shear perturbations in-dilatant liguids is similar
to the fact of the existence of frontal solutions of the type of thermal waves in the theory of nonlinear thermal
conductivity {11]. In both cases the generalized solutions of nonlinear parabolic equations {systems) contain a
surface of a weak discontinuity, i.e., a front, at which a constant solution is joined with a variable solution. In
[12] a connection was established between solutions of the type of thermal waves and the existence of singular
solutions of the corresponding differential equations (systems). With a consideration of problems of the theory
of the boundary layer of dilatant liquids, this connection is also evident.
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EQUILIBRIUM AND STABILITY OF AN INCOMPRESSIBLE
FLUID DROP

V. R. Orel UDC 532.5

Equilibrium shapes and stability of axially symmetric drops were investigated in detail in [1-3]. The
papers [4-8] were devoted to conditions of drop breakup following slow growth. Based on the results of {61, a
mechanism was suggested [7] for determining the surface-tension coefficient of the fluid by the height of the
drop at the moment of break-up. Below we consider equilibrium and stability of an axially symmetric drop,
adjacent to a bulk incompressible fluid and bounded by a planar free surface. Unlike [1-7], in studying the sta-
bility of this system [8] it is necessary to take into account perturbations varying the volume of the drop.
Therefore the class of stable equilibrium shapes is narrowed down.

1. Let some volume Q of an incompressible fluid be in a uniform field of mass forces and be confined by
solid walls of a container 8§ and by free surfaces = and £4. The surface X, is planar, and T confines that part
of the volume, protruding in the form of a drop at the outer surface of the container walls,. We assume that the
wall surface near the contour L is the base of the drop and the wetting characteristic of this part of the wall is
axially symmetric, while the symmetry axis is parallel to the direction of the gravity field g, We assume that
the drop is also axially symmetric., The contour radius of the drop base is denoted by Ry, and the drop height
by H. We introduce a cylindrical coordinate system {r, z, g} with origin at the center of the drop base and a
Z axis along the symmetry axis inside the volume Q (Fig. 1). The coordinates r and z are dimensionless:
r=R/R, z=Z/R,.

We denote by s the path length measured from the plane of the drop along the meridian. The meridian
coordinates are given parametrically

r=r(s), z=12@s), 0<s 1,

where 1 is the total length of the drop meridian.

The functioﬁs r(s), z(s) satisfy the well-known [1] system of ordinary differential equations

(s = —2'(s)gls, B, wha's) = r'(shg(s, B, M) (L.1)
g(s, B. m) = Bals) --n — 2/(s)/r{s)
and the boundary conditions (—h is the ordinate of the pole of the drop)
(L.2)

r0) = 0, 2(0) = —h, r(l) =1, z(l) = 0.

The dimensionless parameters g8, nof the system (1.1) are
p = pgRi/o, n=PpoRdo, (1.3)

where p is the fluid density, g is the acceleration projection of the gravity force g on the Z axis, ¢ is the sur-
face-tension coefficient of the drop, and py is the pressure at the base plane of the drop (z=0).
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